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Analysis of Elliptic and Cylindrical Striplines
Using Laplace’s Equation

K. K. JOSHI anD B. N. DAS

Abstract—Analysis of elliptic and cylindrical striplines based on Lapla-
ce’s equation is presented. The solution of boundary value problem is
obtained by an application of the modified residue calculus technique, The
numerical results on the characteristic impedance are presented for a wide
range of parameters. From the series solution of the Laplace’s equation,
the potential distribution is determined. The effect of warpage due to
environmental changes on an otherwise planar structure is also estimated.

I. INTRODUCTION

HE PAPER presents an analysis of nonplanar strip-

lines having elliptic and cylindrical configurations.
Using the method of separation of variables, the solution
of the two-dimensional Laplace’s equation in orthogonal
curvilinear elliptic coordinates is expressed in the form of
a series which assumes different forms in different regions
of the stripline. The constants appearing in the solution
are determined by the modified residue calculus technique
developed by Mittra [1]. The capacitance per unit length
of the line and hence the characteristic impedance are
determined by integrating the normal derivative of the
potential function over the strip whose transverse section
is a part of an ellipse. The potential distribution along the
ellipse containing the strip is also determined.

The characteristic impedance for the cylindrical strip-
line can be determined from the above general formula-
tion by treating it as a limiting case of an elliptic stripline.
Numerical results for both the elliptic an cylindrical strip-
lines are compared with those obtained by conformal
mapping. The potential distribution along the circle pass-
ing through the circular arc-strip is determined. The effect
of warpage on an otherwise planar structure is investi-
gated. In the cases of both the cylindrical and cylindri-
cally warped striplines, the results are compared with
those obtained by Wang [2].

II. ELLIPTIC STRIPLINE

A cross section of an elliptic arc-strip placed between
two confocal grounded elliptic cylinders is shown in Fig.
1(a). The two-dimensional potential function satisfies the
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Cross sections of (a) elliptic stripline; (b) cylindrical stripline;
(c) warped stripline.

Fig. 1.

Laplace’s equation [3]

9 ¢’=1
o [V

a ’1—4/2 do | | _
+a—¢[ 4,2_1 W}}—O (1)

where ¢ and { are variables in orthogonal curvilinear
coordinates. The curves ¢= constant and ¢ = constant,
represent the sets of confocal ellipses and hyperbolas,

respectively.
In order to solve (1), the change of variables
¢=cosh {
Y=cos 7 @)

is introduced.
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Using the method of separation of variables, the follow-
ing equations are obtained from (1) and (2):

1 d*F,
Fy g2
1 &°F, |,
— =n
F, ap?
where n is a constant and V= F,({)F,(n). The solution of
(3) is considered for the elliptic stripline, whose inner
cylinder ({=¢,=cosh™' ¢,) has a semimajor axis of
length a and the outer cylinder (§={;=cosh™' ¢;) has a
semimajor axis of length equal to g+p. Further, the
semimajor axis of an ellipse containing elliptic arc-strip
({=¢,=cosh™! ¢,) is assumed to be of length a+sp;
where 0<s<1. If the focal distance of these confocal

elliptic cylinders from the origin of the coordinate system
is k, it follows that

¢ =cosh™! (a/k)

{3=cosh™! (9—11) 4

The solutions for the potential function V({,7) in different
regions of Fig. 1 (a) are obtained in Fourier series as
follows:

region I:

2

®3)

®©
V= 2 An sin an(g_ §1)e~a"(n_"2)’

n=1
§1<8<8m<n<II+n, (5)
— S _SEI_%_(§2—_) —a,(n— 2)
B § "sin o, (§53— ) sin &, (§3= §)e =
$r<E <3<y <II+17, (6)
region II:
V.
V———O—(g—iw“ > B, sin B,(¢—¢,) cosh B,(n—mnp),
({2 ) n=1
§1<§<§2,"70<"l<712 (7)
region III:
V,
V= M+ ZC sin v,($5—§) cosh y,(n—1,),
(§5—-5
$<E<Epme<n<m, (3)
region IV:
V= § D, sin a,(§ — §)e @M=,
n=1
§1<$ < — I+ ne<n<my )
- sin a,($—§) — ) m—m)
r= ngl Dnsman(fs_fz) sin o (fy = §)e T,
$H<E<E, — M+ <<y, (10)
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region V:
V
V= of~ §)+ 2 E, sin B8,(§—¢,) cosh B,(ng— ),
($,—-¢$D
§i<E<Em<n<ng (11)
region VI:
V.
ya Yl 9 2 F, sin v,(§3—¢) cosh v,(no—7),
(§3—52)
H<E<EGm<n<n, (12)
where a=nI1/(5= 1)
B,=nIl/($2— &)
Yo =nI1/($5—$5). (13)

In the particular case of n,=2n,— 7, the solutions for
the regions I-III and I'V-VI become identical and further
analysis may be carried out by considering (5)—(8) only.
The above potential functions satisfy the boundary condi-
tions V="V, on the elliptic arc-strip and V=0 on the
grounded elliptic cylinders. Use of the continuity of the
potential function V and its normal derivative at the
interface n=m, and the orthogonality of the functions
sin B8,(¢—¢)) and sin v,({;—{) over the intervals of {, to
¢, and ¢, to {;, respectively, elimination of the constants
B, and C,, appearing in (7)—(8) leads to the following
equations [1]:

ko A ad A
D e e e
* A ® A, 1 e
n=1 % nYm +§mn§1 %+ Y B “Vm +7—m
m=12--- (15)
where
A, =exp [ =28,(n,—n)] (16)
&, =exp [ —2,,(1,~n0)] (17)
A_n=An sin &, ($,—$))
and

Vo = 1.
Solution of the above set of equations can be obtained

from the meromorphic function f(w) of the complex vari-
able w, which has the following properties [1].

1) f(w) has simple poles at w=a,, n=1,2,--- and at
w=0.

2)
AB)+A[(—B,)=0
)+ 8 f(—1,)=0, m=12--

3) f(w) has the asymptotic behavior {w)~K,|w|™" as
|w|-—>00, K;=constant, 1<r<2.
4) The residue of f(w) at w=0, say R{0), is —1. The
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function f(w) may be expressed as

f(w)=Kg(w) P(w) )
where

=%[(§2 s“.)ln( )*“3 s“2)1“( 2)}

o
H(W,an)= H (l—i)ew(gs—fl)/”n

) w($z— &)/ nll

B¢
= T — i w($3—~$)/n
H(W’ Y”) n];Il (1 Y ) w
and
F, x G,
P=1+ 3 s FE Ty @

The constants X, F,,, and G,, appearing in (18) and (19)
are evaluated from the properties 2)-4) of f(w) described
above. Since F,, and G,, are rapidly convergent, the con-
struction of the meromorphic function f{w) involves inver-
sion of a small size matrix [1}. Following the procedure
suggested by Mittra [1], the constants 4,,B,,, and C,, are

obtained as
4, sin [an(§2- §1)] = Rf(an) =D, sin [0(,,({2 - gl)]

(202)
(= B,) exp [ = Bp(ny=mo)]

(20b)
Ep= G = (-1 2 =) %0 [~ 4,0

(20c)

In (20a), R{a,) 1s the residue of f(w) at w= a,. Substitut-
ing (20) in (5)-(8) for the potential function and taking its
normal derivative on the elliptic arc-strip (§=§,), the
expression for the charge distribution on the elliptic arc-
strip is obtained as

Fum = ()" 5y

pi(n) _ 1 i
mo‘f—a+z—a
+ § f( B,) e Bn(m—") 4 o= Bu(n—2m0+n)
m=1 (fz 5'1) [ ]
+ § f( Ym) e~ Ym(Mm= M 4 o~ Yu(n—2m0+m) ]
m=1 (§3 gz) [ ]
No<n<m,. (21)

Making use of the asymptotic form of f(w) for large
values of w, it may be shown that the summation appear-
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ing in the expression for the charge distribution, in the
neighborhood of n—, reduces to the form [1]

—-1/2
(n,— n)]

(22)

and the charge distribution on the strip in the neighbor-
hood of n—n, assumes the form:

) 1
2 m- l/ze—mH(nz—n)/(fz—§1)~[
m=1 -—_{1)

p(n) 1 1 2K i
€€ $— & * -8 * VI (n2=)
2K -
+ o (1= 2me ) 2 @3)

For various combinations of p/a ratio, S, and k, the
values of n=1n,—A, which satisfy (22), are determined.
Integrating (21) from 7, to 7, — A and (23) from (1, —A) to
1, with respect to 7 the expression for the total charge on

the strip, in view of the relation 1,—1n,=1n,—1,, is ob-
tained as
Q=201+ Q) (242)
where n—A
Q= [™ py(n)dn (24b)
"o
.= [ piw)an. (240)

-

Since it has been assumed that ¥,= 1, the capacitance of
the structure is given by

C=2(0,+0Q,) (25)
and the impedance is given by
12011
Ve, Zy= ——. 26
°= (/e 26)

The evaluation of the characteristic impedance of the
strip involves construction of P(w), satisfying (2). In
actual computation the infinite product has to be trun-
cated. The estimated error in the truncated product has
been found to be quite small [1]. The unknown
coefficients F,, and G,, appearing in expression of P(w)
have an exponetial decay with the index m. Thus the
determination of only a few of these lead to a fairly
accurate solution of the problem under investigation [1].

Using expressions (4), (13),(16)—(19) and satisfying con-
dition (2), F,, and G,, required for the construction of f{w)
are evaluated for values of (,—7,) ranging from 1.5° to
120° for the following cases.

1) p/a=0.1, s=0.3, and k/a=0.25,0.5, and 0.75.
2) p/a=025, s=0.3, and k/a=0.25,0.5, and 0.75.
3) p/a=05, s=0.3, and k/a=0.25,0.5, and 0.75.
4) p/a=10, 5=03, and k/a=0.25,0.5, and 0.75.
5) p/a=15,5=03, and k/a=0.28.

The variation of the characteristic impedance with 7,
—1), is evaluated from (21)—(26) and the results are pre-
sented in Fig. 2. For the sake of comparison the results on
characteristic impedance obtained by conformal mapping
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Fig. 2. Variation of the characteristic impedance for the elliptic strip-
line; s =0.3 (— =present method, -x-x-=conformal mapping).

are also presented in the same figure for p/a=1.5, s=0.3,
and k/a=0.8. Using the successive transformations
[4],[5], an elliptic stripline can be transformed into a
parallel plate configuration from which the characteristic
impedance is evaluated.

The variation of the characteristic impedance with 1,
—n, for §=0.5"and 0.7 and various values of p/a and
k/a are presented in Figs. 3 and 4, respectively.

The variable , — 7, can be expressed in terms of #, and
6,, the angles made by the edges of the elliptic strip with
the major axis of the ellipse. The relationship is given by

coth {,(tan §,—tan 4,)
1+coth? ¢, tan @, tan 8, |

If 6,=6,+A0 and 8, =0,— Ad, then
, coth {,[ tan (8,+A8) —tan (§,—Af)]
1+ cothltan (8,+ Af)tan (,—A0)
(27)

From (27) it is evident that the characteristic impedance
depends on 8y, A and also on {, which is related to the
eccentricity k/a. From the results shown in Figs. 2-4 and
(27), the dependance of the characteristic impedance on 6,
and A# can be determined. Expression (27) reveals that
for large {, (corresponding to small values of eccentricity
k/a), coth §, approaches unity and 7, — 7, approximates
2A6. For such cases, the characteristics impedance is
practically independant of 6, For lower values of {,
corresponding to higher values of k/a, dependance of the
characteristic impedance on 8, is of significance. For a
particular value of eccentricity and 8, the impedance
decreases with increase in Ad. Further, for a particular Ag
and eccentricity, the impedance increases as f, increases
from 0° to 90°. The curves of Figs. 2-4 can be used to

1

M- m=tan

m—m=tan
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Fig. 3. Variation of the characteristic impedance for the elliptic strip-
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Fig. 4. Variation of the characteristic impedance for the elliptic strip-
line; s=0.7.

determine the characteristic impedance for a number of
combinations of eccentricity k£/a, 6,, and A8.

Using the results of F,, and G,, obtained for p/a=1.5,
k/a=0.8, and s=0.3, 7,—1,=23° and evaluating the
residue of f{w) at w=a,, the potential function at {=¢,
for 1, <n <II+ 17, is calculated from

(28)

The variation of the potential V({,,n) for the above case is
presented in Fig. 5(a).

e o]
V(fz,"l)= 2 Rf(an)e_an(ﬂ_'ﬂz) .
n=1

1118

The cross section of a cylindrical stripline consisting of
a circular arc-strip at a potential ¥V, placed between two

CYLINDRICAL AND WARPED STRIPLINE
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Fig. 5. (a) Potential distribution along the ellipse (§ = ¢,) for 5, <n<II
+1g, p/a=15, s=03, k/a=08, and 5, —n,=23°. (b) Potential dis-
tribution along the circle (r=a+sp) for 8,<0<T+8y, p/a=1, s=

0.4, and a=30°.
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Fig. 6. Variation of the characteristic impedance of cylindrical stripline

with strip half-angle; (

=present method, -0-0-=conformal map-

ping method, -x-x-=Wang’s method [2].)

grounded concentric cylinders is shown in Fig. 1(b). Radii
of the inner and outer cylinders are r(=4a) and ry(=a+
p), respectively, and that of the arc-strip is r,(=a+ sp).
The cylindrical stripline can be considered as a limiting
case of an elliptic stripline. As k—0, the ellipses and
hyperbolas degenerate into circles and radial lines, respec-
tively. From (4), it is found that for k=0,

§3_§1=1n(a+p)

a
a+ s
o ymin (212)
t=t=ln (22 ) 29)
3092 a+sp
and
m=46,
n=0,
1o="09. (30)

The angle 2a, subtended by the arc-strip at the center is
given by

2a=0,—0,=2(0,—6,). 31

Substituting (29)—(31) in (4)-(26) and following the
procedure described in Section II, the variation of the
characteristic impedance as a function of the strip half-
angle is determined for various values of p/a and 5. The
results are presented in Fig. 6. In the same figure the
impedance obtained by conformal mapping for p/a=1,
s=0.4 is shown for the sake of comparison. It may be
pointed out that Wang [2] determined the characteristic
impedance of the cylindrical stripline for the same values
of parameters and the strip half-angles greater than 20°,
These results are also presented in Fig. 6.

For the particular case of strip radius equal to the
geometric mean of the radii of the two outer cylinders, the
variation of the characteristic impedance as a function of
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width-to-height ration w/h of a warped stripline; #/a=0.01, s=0.5
(~——=present method, -0-0-=planar symmetric formulation [6], -x-x-
=conformal mapping method, ——Wang’s method [2)).

the strip half-angle is shown by the dots in the same figure
for s=0.5,p/a=0.25, and 0.5, It is evident that if the strip
radius is the geometric mean of the radii of the two outer
cylinders, the characteristic impedance is maximum.

Following the procedure described in Section II, the
potential distribution at the radius of r=a+ sp, for 6,<8
<TII+8, is calculated for p/a=1, s=04, and a=30°.
The results are presented in Fig. 5(b).

In order to study the effect of warpage on an otherwise
planar stripline, a symmetrical structure with r,—r;=r;—
r,=h/2, where h=r;—r,, is considered. For an arc-strip
of length W subtending an angle 2« at the center, W=
2ar,. A warped structure shown in Fig. 1(c) can be
obtained for small angle and large radius. The warpage of
the line is indicated by the height to radius ratio £/a.

Using (13), (16)—(19), and (21)—(26), the variation of the
characteristic impedance as a function of the width-to-
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height ratio w/h of the strip is evaluated for A/a=0.01
and s=0.5, the results are presented in Fig. 7 together
with those obtained by conformal mapping technique and
also by Wang [2] using numerical solution of Laplace’s
equation. In the same figure, the numerical results ob-
tained by Mittra [6] for an almost symmetric planar
stripline (s=1/V3.999 ) are also presented for the sake of
comparison. It is found that the results obtained by Wang
[2] show a marked deviation from those obtained by other
methods.

CONCLUSION

The numerical results for the characteristic impedance
obtained by the application of the modified residue
calculus technique do not exhibit marked deviation from
those obtained by conformal mapping technique for both
the elliptic and cylindrical striplines. For large strip angles
the hyperbolic functions appearing in (5)—(8) can be ap-
proximated by exponential functions. The characteristic
impedance in this case can be determined from purely
analytical solution of Laplace’s equation. For the case of
the cylindrical and cylindrically warped striplines, the
results obtained by the present method are found to be
close to those obtained by conformal mapping. The re-
sults obtained by Wang [2] show an appreciable deviation
for low strip angles.
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