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Analysis of Elliptic and Cylindrical Striplines
Using Laplace’s Equation

K. K. JOSHI AND B. N. DAS

Abstnrct-halysff of elliptic and cylimfricaf stripfinea based on Lapla-

ce’s equation is presented. The solution of boundary value problem is

obtafned by an application of the modifwd residue cabxdus technique. The

numerical resufta on the cfmmcten “tic im*ce are presented for a wide

range of parameters. From the serfea solution of the Laplace’s equationj

the ptentiaf distribution is deterodned. The effect of warpage due to

environmental changes on an otherwise planar structure is also estimated.

L INTRODUCTION

T HE PAPER presents an analysis of nonplanar strip-

lines having elliptic and cylindrical configurations.

Using the method of separation of variables, the solution

of the two-dimensional Laplace’s equation in orthogonal

curvilinear elliptic coordinates is expressed in the form of

a series which assumes different forms in different regions

of the stripline. The constants appearing in the solution

are determined by the modified residue calculus technique

developed by Mittra [1]. The capacitance per unit length

of the line and hence the characteristic impedance are

determined by integrating the normal derivative of the

potential function over the strip whose transverse section

is a part of an ellipse. The potential distribution along the

ellipse containing the strip is also determined.

The characteristic impedance for the cylindrical strip-

line can be determined from the above general formula-

tion by treating it as a limiting case of an elliptic stripline.

Numerical results for both the elliptic an cylindrical strip-

lines are compared with those obtained by conformal

mapping, The potential distribution along the circle pass-

ing through the circular arc-strip is determined. The effect

of warpage on an otherwise planar structure is investi-

gated. In the cases of both the cylindrical and cylindri-

cally warped striplines, the results are compared with

those obtained by Wang [2].

II. ELLIPTIC STRIPLINE

A cross section of an elliptic arc-strip placed between

two confocal grounded elliptic cylinders is shown in Fig.

l(a). The two-dimensional potential function satisfies the
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(c)

Fig. 1. Cross sections of (a) efliptic stripline; (b) cylindrical stripfine;
(c) warped stripline.

Laplace’s equation [3]

;=/=[%[/=+1

where o and # are variables in orthogonal curvilinear

coordinates. The curves += constant and #= constant,

represent the sets of confocal ellipses and hyperbolas,

respectively.

In order to solve (l), the change of variables

$=COSTJ

is introduced.

(2)
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Using the method of separation of variables, the follow-

ing equations are obtained from (1) and (2):

1 d2Fl.— .
F, ~{2 ‘n2

1 d2F2
——=n=-- (3)
&2 dq~ . .

where n is a constant and V= Fl({)Fz(q). The solution of

(3) is considered for the elliptic stripline, whose imer

cylinder ({= {1= cosh– 1 ql) has a semimajor axis of
length a and the outer cylinder ({= Is = cosh - 1 ~~) has a

semimajor axis of length equal to a +p. Further, the

semimajor axis of an ellipse containing elliptic arc-strip

(J= {2= cosh - 1 $~ is assumed to be of length a+ sp;
where O<s <1. If the focal distance of these confocal

elliptic cylinders from the origin of the coordinate system

is k, it follows that

{, =cosh-l (a/k)

(a+sp){==cosh-~ ~

()
{3=cosh-* ~ . (4)

The solutions for the potential function V(J, q) in different

regions of Fig, 1 (a) are obtained in Fourier series as

follows:

region I:

V= ~ A. Sin a~({– fl)e–%(~-q’),
~=1

{, <J< f2,q, <q<rI+q. (5)

j’2<{<{,,q, <q< II+T10 (6)

region II:

{,<{ <f2,7/o<71 <7?2 (7)

region III:

v= VO({3– {)
+ ~ C. sin Y.({3 – t) cosh Yn(q – ~0)>

K3-J’2) ?2=1

(8)

(9)

(lo)

{, <J<r=,?l,<n<To (11)
region VI:

~= VO({3– g)
+ S Fn sin Yn(J3– {) CoshY.(To– q),

(G-L) .=1

where
an= n~/({3 – {1)

/%= ~w((,- r,)
Y.= nw(t3 – {2). (13)

In the particular case of q== 2qo – ql, the solutions for

the regions I–III and IV–VI become identical and further

analysis may be carried out by considering (5)–(8) only.

The above potential functions satisfy the boundary condi-

tions V= Vo, on the elliptic arc-strip and V= O on the

grounded elliptic cylinders. Use of the continuity of the

potential function V and its normal derivative at the

interface q = q= and the orthogonality of the functions

sin /3.({ – {1) and sin Y.(13 – f) over the intervals of {1 to

12 and 12 to {3, respectively, elimination of the constants
B~ and Cm appearing in (7)–(8) leads to the following

equations [1]:

m=l,2. ,” (15)

where

& =exp [ -2&(qz - ~0)1 (16)

~~ =exp [ -2y~(q2- qo)] (17)

~~ =A~ sin an({= – {1)

and

Vo= 1.

Solution of the above set of equations can be obtained

from the mesomorphic function ~(w) of the complex vari-

able w, which has the following properties [1].

1) j(w) has simple poles at w= a., n = 1,2,. . . and at

W=o.

2)

f(&) +Lf(- &J=o

~(Ym) + L/(- Ym) =0, m=l,2 . . . .

3) f(w) has the asymptotic behavior f(w)-Kl 1WI‘V as

Iw/+co, K, = constant, 1 <v< 2.

4) The residue of ~(w) at w = O, say RfiO), is – 1. The
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function ~(w) may be expressed as

j(w) = Kg(w) P(w) (18)

where

and

P(w)=l+ j
Fw Gw

+5
l–(w/&J ~=~ l–(w/ym) “

(19)
m=l

The constants K, F~, and G~ appearing in (18) and (19)

are evaluated from the properties 2)–4) of ~(w) described

above. Since F~ and G~ are rapidly convergent, the con-

struction of the mesomorphic function j(w) involves inver-

sion of a small size matrix [1]. Following the procedure

suggested by Mittra [1], the constants An, Bm, and Cm are

obtained as

-4. sin [an((,–1,)]= l$(a.) = D. Si. [ a.({, – (,)]
(20a)

Fm=B~=(–l)m ~J2~ ~,) f(- L) exp [ - &(~,-nO)]

(20b)

Em=cm=(–l)m ~g,~ ~,)~(- Ym) exp [ - Ym(T12- ~o)].

(20C)

In (20a), RJaJ is the residue of j(w) at w= an. Substitut-

ing (20) in (5)–(8) for the potential function and taking its

normal derivative on the elliptic arc-strip (~= Q, the

expression for the charge distribution on the elliptic arc-

strip is obtained as

k%(q) _ 1 1

er&o {2–{1 + {3–{2

+iimn,f(_pm)[e-B.(w2 -m)+e-B.(w-2no+ v2)]

m=l (J2-tJ

qo<q <q,. (21)

Making use of the asymptotic form of ~(w) for large

values of w, it may be shown that the summation appear-

383

ing in the expression for the charge distribution, in the

neighborhood of q~qz reduces to the form [1]

g ~-l,2e-??m,.2-? 7)/(12-cl)_

~=1 [ 1(J2:@2-q)-1’2
(22)

and the charge distribution on the strip in the neighbor-

hood of q~q2 assumes the form:

P,(n) _ 1 1— —
=(T,- d-”2

●reo {2–{1 + {3–{2+ m

+ 2K
7=(712-%+ q)-1’2. (23)

For various combinations of p/a ratio, S, and k, the

values of q = qz – A, which satisfy (22), are determined.
Integrating (21) from TOto q, – A and (23) from (q, – A) to

TJ2with respect to n the expression for tie total charge on
the strip, in view of the relation q, – qO= TO– ql, is ob-

tained as

Q=2(Q1+Q2)

where
Q,=r2-AP,(O%

no

Q2= ~;AP@%.

Since it has been assumed that V.= 1,

the structure is given by

C=2(Q, +Q2)

and the impedance is given by

~ Zo= 120H
(c/6rEo) “

The evaluation of the characteristic

strip involves construction of P(w),

(24a)

(24b)

(24c)

the capacitance of

(25)

(26)

impedance of the

satisfying (2), In
actual computation the infinite product has to be trun-

cated. The estimated error in the truncated product has

been found to be quite small [1]. The unknown

coefficients FM and G~ appearing in expression of P(w)

have an exponential decay with the index m. Thus the

determination of only a few of these ‘lead to a fairly

accurate solution of the problem under investigation [1].

Using expressions (4), (13), ( 16)–(19) and satisfying con-

dition (2), F~ and G~ required for the construction of j(w)

are evaluated for values of (qz – ql) ranging from 1.5° to
120° for the following cases.

1) p/a =0.1, s =0.3, and k/a =0.25,0.5, and 0.75.

2) p/a =0.25, s=O.3, and k/a= 0.25,0.5, and 0.75.

3) p/a =0.5, s=O.3, and k/a =0.25,0.5, and 0.75.

4) p/a= 1.0, s=O.3, and k/a =0.25,0.5, and 0.75.

5) p/a= 1.5, s=O.3, and k/a =0.8.

The variation of the characteristic impedance with qz

– q, is evaluated from (2 1)–(26) and the results are pre-

sented in Fig. 2. For the sake of comparison the results on

characteristic impedance obtained by conformal mapping
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Fig. 2. Variation of the characteristic impedance for the elliptic strip-
line; s= 0.3 (— = presentmethod, -x-x-= conformal mapping).

are also presented in the same figure for p/a= 1.5, s =0.3,

and k/a = 0.8. Using the successive transformations

[4], [5], an elliptic stripline can be transformed into a

parallel plate configuration from which the characteristic

impedance is evaluated.

The variation of the characteristic impedance with Tz

– q, for S= 0.5 and 0.7 and various values of p/a and

k/a are presented in Figs. 3 and 4, respectively.

The variable qz – q, can be expressed in terms of 02 and

131,the angles made by the edges of the elliptic strip with

the major axis of the ellipse. The relationship is given by

[

coth (Jtan 02 – tan 81)
qz–ql=tan–l

1
1+ coth2 {z tan 02 tan 01 “

If 02=00+ A@ and 01=00 – AO, then

coth {2[tan (60+ AO)–tan (80– A8)]
q2–ql=tan–1

1 + coth~tan (O.+ Af?)tan (OO– A8) “

(27)

From (27) it is evident that the characteristic impedance

depends on O., A/3 and also on {2 which is related to the

eccentricity k/a. From the results shown in Figs. 2–4 and

(27), the dependence of the characteristic impedance on 190

and A19 can be determined. Expression (27) reveals that

for large {2 (corresponding to small values of eccentricity

k/a), coth {2 approaches unity and q2 – q ~ approximates

2A0. For such cases, the characteristics impedance is

practically independent of O.. For lower values of {z

corresponding to higher values of k/a, dependence of the

characteristic impedance on 00 is of significance. For a

particular value of eccentricity and 130, the impedance

decreases with increase in A13. Further, for a particular A@

and eccentricity, the impedance increases as 00 increases

from 0° to 90°, The curves of Figs. 2–4 can be used to
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Fig. 3. Variation of the characteristic impedance for the etfipdc strip-
line; s=O.5.
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Fig. 4. Variation of the characteristic impedance for the etliptic strip
tine; s=0.7.

determine the characteristic impedance for a number of

combinations of eccentricity k/a, O., and A9.

Using the results of F~ and G~ obtained for p/a= 1.5,

k/a =0.8, and s= 0.3, q2–TO=230 and evaluating the

residue of j(w) at w = cq, the potential function at { = {2

for ~2 <q < II + qO is calculated from

~=]

The variation of the potential V({2, q) for the above case is

presented in Fig. 5(a).

III. CYLINDRICAL AND WARPED STRIPLINE

The cross section of a cylindrical stripline consisting of

a circular arc-strip at a potential VO, placed between two
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Fig. 5. (a) Potential distribution along the ellipse ({= {J for qzc~ < II

+Vw P/a= 1.5,s=0.3, &/a =0.8, and q2– qo=230. (b) Potential dis-
tribution along the circle (r=a+sp) for 132<0<II+13@ p/a= 1, s=
0,4, and a= 30”.
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Fig. 6. Variation of the characteristic impedance of cylindrical stripfine
with strip half-angle; (— = present method, -O-O-=conformal map-
ping meth~ -x-x-= Wang’s method [2].)

grounded concentric cylinders is shown in Fig. l(b). Radii

of the inner and outer cylinders are rl( = a) and rJ = a +

p), respectively, and that of the arc-strip is rz( = a + sp).

The cylindrical stripline can be considered as a limiting

case of an elliptic stripline. As k+O, the ellipses and

hyperbolas degenerate into circles and radial lines, respec-

tively. From (4), it is found that for k= O,

(29)

and

The angle 2a, subtended by the arc-strip at the center is

given by

2a=02– 01=2(0.– e,)! (31)

Substituting (29)–(3 1) in (4)–(26) and following the

procedure described in Section II, the variation of the

characteristic impedance as a function of the strip half-

angle is determined for various values of p/ a and s. The

results are presented in Fig. 6. In the same figure the

impedance obtained by conformal mapping for p/a= 1,

s =0.4 is shown for the sake of comparison. It may be

pointed out that Wang [2] determined the characteristic

impedance of the cylindrical stripline for the same values

of parameters and the strip half-angles greater than 20°.

These results are also presented in Fig. 6.

For the particular case of strip radius equal to the

geometric mean of the radii of the two outer cylinders, the

variation of the characteristic impedance as a function of
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Fig. 7. Variation of the characteristic impedance as a function of
width-to-height ration w/~ of a warped stripfine; h/a= 0.01, s =0.5

(--- ‘present fneth@ -Q-o-= planar symmetric form~ation M -x-x-
= conformaf mapping metho~ —Wang’s method [2]).

the strip half-angle is shown by the dots in the same figure

fors = 0.5,p/a = 0.25, and 0,5. It is evident that if the strip

radius is the geometric mean of the radii of the two outer

cylinders, the characteristic impedance is maximum.

Following the procedure described in Section II, the

potential distribution at the radius of r= a + sp, for 02<6

<IT+ 00 is calculated for p/a= 1, s=0,4, and a =30”.

The results are presented in Fig. 5(b).

In order to study the effect of warpage on an otherwise

planar stripline, a symmetrical structure with rz – r, = r~ –

rz = h/2, where h = r~ – r-l, is considered. For an arc-strip

of length W subtending an angle 2a at the center, W=

2ar2. A warped structure shown in Fig. l(c) can be

obtained for small angle and large radius. The warpage of

the line is indicated by the height to radius ratio h/a.

Using (13), (16)–(19), and (21)-(26), the variation of the

characteristic impedance as a function of the width-to-

height ratio w/h of the strip is evaluated for h/a =0.01

and s =0.5, the results are presented in Fig. 7 together

with those obtained by conformal mapping technique and

also by Wang [2] using numerical solution of Laplace’s

equation. In the same figure, the numerical results ob-

tained by Mittra [6] for an almost symmetric planar

stripline (.s= 1/ - ) are also presented for the sake of

comparison. It is found that the results obtained by Wang

[2] show a marked deviation from those obtained by other

methods.

CONCLUSION

The numerical results for the characteristic impedance

obtained by the application of the modified residue

calculus technique do not exhibit marked deviation from

those obtained by conformal mapping technique for both

the elliptic and cylindrical striplines. For large strip angles

the hyperbolic functions appearing in (5)–(8) can be ap-

proximated by exponential functions. The characteristic

impedance in this case can be determined from purely

analytical solution of Laplace’s equation. For the case of

the cylindrical and cylindrically warped striplines, the

results obtained by the present method are found to be

close to those obtained by conformal mapping. The re-

sults obtained by Wang [2] show an appreciable deviation

for low strip angles.
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